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1. 緒  言 

 近年，少子高齢化による熟練作業員の引退や人材流動化，

高学歴化等の背景を受け，保守人員の必要量に対し供給量

が不足している(1)(2)．このような状況下では， 少ない人材

で効率よく保守作業を進めるための支援システムの構築が

重要と考えられる．特に，保守業務で頻発するアラートや

故障の原因分析業務では，機械工学，電気工学，制御工学

などの幅広い知識や製品の構造に関する知識が必要なこと

に加え，1 つの故障が連鎖的に他の部品の故障を引き起こ

すことや，機械，電気，制御，環境要因が複雑に絡み合う

ことがあり，故障の原因特定に困難を伴うことがある．こ

のように，故障分析業務は原因特定の困難さ故に分析作業

を効率よく進めることが難しく，支援システムの構築が重

要な業務だと考えられる． 

 上記のような原因特定の困難さを解決するため，従来は

エキスパートシステムやベイズネットワークなどの知識ベ

ースシステムが用いられてきた(3)(4)．また，機械学習を用い

た故障診断手法も提案されている(3)(4)．しかし，これらの手

法は事前に故障パターンを定義する必要があり，複雑で多

様な故障シナリオに対応することが困難である．また，新

たな故障パターンが発生した場合，システムの再構築や再

学習が必要となるため，保守現場での迅速な対応が難しい
(4)． 

 大規模言語モデル（LLM）の登場により，テキスト理解

と推論能力が飛躍的に向上した．LLM は事前学習により幅

広い知識を保有しており，新たなタスクに対しても柔軟に

対応できる (5)．さらに，Retrieval-Augmented Generation 

（RAG）と組み合わせることで，外部知識を動的に参照し

ながら回答を生成することが可能になる (6)．特に，Graph 

RAG の一手法である Think-on-Graph（ToG）(7)は，知識グ

ラフ上で LLM が動的にパス検索を進める手法であり，複

雑なシステムの構成や因果関係を効果的に検索・分析でき

ると考えられる． 

そこで本研究では，機器やシステムの配管図，単線結線

図，機能ブロック図，流体の流れや動力の伝達関係をグラ

フ構造で表現した知識グラフと， ToG を組み合わせた故障

分析支援チャットシステムを提案する．提案手法では，ユ

ーザが入力した故障状況をクエリとして，LLM が知識グラ

フ上に表現された機器構成や接続関係を理解しながら動的

にパスを検索し，故障の根本原因を推定する，あるいは原

因候補を列挙することが可能である．この手法により，事

前の故障パターン定義なしに，多様な故障シナリオへ柔軟

に対応できると期待される． 

本論文では，提案手法を風車保守，特にドライブトレイ

ン回りの故障分析に適用し，実際の保守作業員による 5 段

階評価を通じて，その有効性を検証した結果について報告

する． 

2. 提案する故障支援手法 

2.1. 知識グラフの設計 

 知識グラフとは，ノードとエッジの集合で構成されるグ

ラフの 1 種である．知識グラフでは，物体や人物，事象と

いったエンティティ𝑒をノードで表す．さらに，関係𝑟をエ

ッジで表現することで，2 つのエンティティ𝑒1, 𝑒2間の関係

(𝑒1, 𝑟, 𝑒2)を記述する． 

提案手法では，LLM が故障分析対象の製品の部品構成を

認識できるよう，知識グラフに部品𝑒の関係𝑟を記述する．

ここで，部品同士の関係とは，機器やシステムのアセンブ

リ図，配管図，単線結線図，機能ブロック図などに記述さ

れるような，部品間の情報やエネルギー，力のやり取りで

ある． 

 

表 1 関係𝑟のリスト 

関係名 内容 

FIX 締結する、固定する 

PROPAGATE_POWER_TO 動力を伝える 

DYNAMICALLY_FIXES 制動する 

DETECT_STATE_OF 状態検知する 

SEND_SIGNAL_TO 信号を送る 

SUPPLY_OIL_TO 潤滑油を供給する 

HAS_ERROR_CODE エラーコードを持つ 
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本論文では，発電用風車のドライブトレイン周りで発生

するアラートを用いて検証するため，表 1 の関係を用いて

知識グラフを構築した．また，図 1 に構築した知識グラフ

の模式図を示す．なお，問合せで良く出現すると考えられ

るエラーコードと，対応するセンサー関連のコンポーネン

トとの対応を記述するため，エラーコードとセンサーの対

応関係を HAS_ERROR_CODE で記述した． 

 

 

図 1 構築した知識グラフの模式図（一部） 

 

2.2. Think-on-Graph による故障分析 

 ToG は与えられた質問を基に，質問と関連する知識グラ

フ上のパスを検索し，回答を生成する技術である．提案す

る ToG を用いた故障分析の流れを以下に示す： 

Step 1 ユーザが入力した質問からキーワードを抽出

する．抽出したキーワードを基に知識グラフ

のノードをベクトル検索し，探査の起点とな

るノードを決定し，検索パスとして設定する． 

Step 2 検索パスの末端ノードから距離 1 hop のパス

を取得して，候補パスとする． 

Step 3 候補パスと質問を LLM に入力し，質問を回答

するのに有益なパスを LLM に選択させる．選

択されたパスを基に，検索パスを更新する． 

Step 4 現時点の検索パスで回答生成可能か LLM に

判定させる．事前に設定したループ回数未満

かつ，回答生成不可能の場合，Step 2 に戻る． 

Step 5 得られた検索パスを基に，ユーザが入力した

質問に対する回答を生成する． 

上記のように，LLM が知識グラフ上で推論し，パスを辿っ

ていくことで，複雑なシステムの構成や因果関係を効果的

に検索・分析できる．なお，Step 3 では，現論文を参考に，

以下のプロンプトで LLM にパスを選択させた． 

あなたは優秀な保守作業者です．あなたの仕事は，与え

られた質問から，機器の部品構成とその関係が記述され

た知識グラフを参照して，故障原因を特定することで

す． 

 

グラフデータベースから取得された各ノードについて，

質問に対する回答を生成するのに有益なノードを選択

してください． 

 

質問：{query} 

パス：{paths} 

ここで，{query}はユーザから入力された質問，{paths}は

Chpher のパス表記で表記された候補パスである．また，Step 

4 の回答生成可否判断では，以下のプロンプトを入力した． 

あなたは優秀な保守作業者です．あなたの仕事は，与え

られた質問から，機器の部品構成とその関係が記述され

た知識グラフを参照して，故障原因を特定することで

す． 

 

ナレッジグラフから取得されたトリプレットから得ら

れた知識のみに基づいて，質問に回答に答えることがで

きるか判断してください． 

 

質問：{query} 

パス：{paths} 

 

3. 実験条件 

 発電用風車で発生するドライブトレイン関連のアラーム

10 個に関する問い合わせを ToG に入力し，回答を生成し

た．さらに，生成した回答を 7 名の風車保守員に評価いた

だいた．評価は，各質問に対し表 2 の 5 項目を用いた 5 段

階リッカート尺度を集計し，各項目の平均点を比較する． 

 

表 2 アンケートの評価項目 

項目 内容 

1. 全て正しい (5) / 誤りが含まれている (1) 

2. 重要な不具合原因がきちんと含まれている (5) 

/ 含まれていない (1) 

3. これまでの事例としてであったことは無いが、

自分の知識と照らし合わせて、あり得る故障や

分析を提示していると感じる (5) / 一般的な

事柄が多い (1) 

4. 理由や部品間の関係が提示されていて納得感

がある・理解しやすい (5) /納得感がない・理解

しにくい (1) 

5. 現地作業や保守準備にあたって必要な情報が

示されている (5) / 示されていない (1) 

 

 表 2 の項目番号 1 は出力の正確さを，2 は保守で頻発す

る重要な故障原因を示せたかを，3 は滅多に表れないがあ

りうる故障原因を提示できたか（未知の故障原因を示せる

か）を，4 は理解しやすさを，5 は保守準備に必要な情報を

提示できるかを評価する． 

 比較のため，AWS Kendra(8)を用いた RAG による回答生

成も実施した．RAG の検索ソースにはアラームの対処要領

や過去事例が書かれた文書を格納した． 

 実験には提案手法，RAG ともに，LLM として Anthropic 

Claude 3.5 Sonnet(9)を用いた． 

4. 実験結果及び考察 

 図 2 に 5 段階リッカート尺度による各項目の平均点を示

す．なお，図 2 横軸の項目番号は表 2 の項目番号と対応す

る．まず，項目 1 に関しては提案手法が 3.9 点，RAG が 4.1

点，項目 2 では提案手法が 3.9 点，RAG が 3.8 点と同程度

であった．したがって，内容の正しさや，頻発する重要な
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故障原因を示す能力は，提案手法は RAG と同程度と示唆

される．一方，項目 3 は提案手法が 3.5 点，RAG が 2.7 点

と得点差が見られた．これは，提案手法が RAG と比較し，

様々な故障原因を提示可能であることを示唆するものと考

える．また，わかりやすさを示す 項目 4 は提案手法が 3.6

点，RAG が 2.8 点，保守に必要な情報を示したかを評価す

る項目 5 は提案手法が 3.4 点，RAG が 2.8 点となった．  

 

 

図 2 5 段階リッカート尺度による各項目の平均点 

 

項目 4 及び 5 においても提案手法が RAG より高い得点

を示した理由を考察するため，保守員による評価と同時に

取得した自由記述によるコメントを表 3 にまとめる． 

 

表 3 評価時に収集した提案手法に対するコメント 

番号 コメント 

1 言葉の補完や順序立てがされており、わかりや

すい文章になっていた 

2 図示等があるとさらにわかりやすいと感じた 

3 制御盤図等で調査ケーブルの位置が分かりや

すいと感じた 

4 センサの場所、写真 (正常状態のもの)が欲しい 

5 解説や点検提案が部品ごとに行われるため、理

解しやすい 

6 部品の特定がしやすい文章になっていた 

7 手順に違いを感じた(増速機のシャフト点検の

あとケーブル確認等、一般的な保守手順と違う) 

 

表 3 の番号 1， 5 及び 6 より，部品間の関係や，部品の補

足情報 （○○部に取り付けられた××部品など，部品を補

足するような情報）が，わかりやすさや保守に必要な情報

を示したと感じる要因であることが示唆される． 

 一方，表 3 から，図表を出力してほしいといったコメン

トや手順に違いがあるといったコメントが見られた．この

ことから，分析調査の手順を保守員が実際に実施している

ものに近づける工夫や，回答生成時に図を提示する仕組み

の構築が今後の課題と言える． 

5. 結 言 

 本論文では ToG を用いた故障分析手法を提案した．また，

提案した手法の初期調査として，提案手法の出力結果を 5

段階リッカート尺度による感性で評価した．評価の結果，

既存の RAG と比べ，提案した手法は未知の故障を提示し

たり，保守員にとってわかりやすい分析結果を提示する能

力が高いことが示唆された．このことから，ToG を用いた

提案手法は，複雑なシステムの構成や因果関係を効果的に

分析し，多様な故障シナリオへ柔軟に対応可能な故障分析

支援システムになりうると考える． 

 今後の課題としては，提案手法が生成する分析手順を実

際の保守手順に近づけるための調整や，回答生成時に図表

や写真を提示する仕組みを導入することで，理解性と納得

感を一層高めることがあげられる．また，本論文の初期評

価は故障事例 10 件，保守員 7 名という限定的な規模での

感性評価を実施した．よって，故障事例及び評価者人数を

拡大した感性評価の実施や，故障原因特定の精度評価，診

断時間短縮効果の測定といった定量評価の実施も，今後の

課題としてあげられる． 
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