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Abstract 

Understanding artistic style is essential for interpreting 

works of arts. Comparing stylistic difference of works by 

different artists can help us better understand how art style is 

expressed. While artistic style is often regarded as subjective, 

objective geometric descriptors can offer measurable view to 

analyze individual tendencies in three-dimension artworks. In 

this study, we explore how geometric and spectral properties vary 

across three-dimensional artworks by different creators. We 

collected clay sculptures created by professional artists and 

analyzed curvature, saliency and Laplacian operator. By 

calculating similarity matrices based on these features, we aim to 

identify the stylistic patterns and differences. Our results 

demonstrate that the geometric features can serve as quantitative 

indicators of sculptural style. 

1. Introduction 

In the field of two-dimensional art, such as paintings and 

prints, lots of research has already been conducted on style 

analysis. A large body of work has examined how brushstrokes, 

color palettes, or compositional patterns can serve as indicators 

of artistic style [1]. However, systematic studies of style in three-

dimensional artworks are limited. 

With the advancement of three-dimensional (3D) scanning 

technology, obtaining high-quality 3D data has become 

increasingly accessible due to the decreasing cost and improving 

accuracy of commonly used scanners. The technology progress 

has opened new opportunities for the study of artworks, 

particularly 3D objects like crafts and sculptures. While some 

researches have focused on surface reconstruction or geometric 

modeling, few attempts have been made to connect measurable 

geometric descriptors directly to artistic individuality of three-

dimensional artworks. Our study addresses this gap by 

investigating curvature, saliency [2], and Laplacian eigenfeatures 

[3] to capture stylistic tendencies in clay sculptures created by 

different artists. Specifically, we focus on Laplacian 

eigenfeatures, which summarize global spectral properties of 

shape. By analyzing these features in clay sculptures created by 

different artists (Figure 1), we aim to explore whether geometric 

and spectral analysis can reveal consistent stylistic patterns that 

distinguish one author’s work from another. 

 

    
Figure 1. Clay artworks from various artists 

 

 

 

2. Method 

We designed the study to test whether geometric descriptors 

can reflect artistic styles in 3D forms. Four artists were asked to 

model six basic clay shapes: cone, cube, cup, cylinder, sphere and 

torus, using the same amount of clay material to keep the works 

comparable. We choose these limited shapes to control variables 

for comparative analysis. Each piece was digitized through x-ray 

CT scanning and reconstructed as a mesh, which serves as the 

basis for further analysis. To obtain a standardized representation 

of the surface geometry, we performed voxel thresholding using 

Otsu’s method [4], followed by Marching Cubes [5] to extract its 

surface. 

Our analysis proceeded on two levels consisting of local 

feature analysis and global feature analysis. To capture local 

surface features, we computed mean curvature at mesh vertices 

and applied a mesh saliency algorithm to highlight perceptually 

prominent regions. The results were displayed with surface color 

maps, and their distributions were summarized in histograms for 

quantitative comparison. 

To characterize global shape structure, we performed 

Laplacian eigen-analysis on the meshes and extracted 

eigenvalues as spectral features. These descriptors provide a 

compact representation of overall form that complements the 

local measures. Geometrically, each eigenvector corresponds to 

a harmonic basis function defined on the surface: low-frequency 

modes smoothly across large area while high-frequency modes 

wave rapidly over local regions. 

Given a triangular mesh with vertices 𝑉 = {𝑣𝑖}𝑖=1
𝑁   and 

faces 𝐹 = {𝑓𝑗}𝑗=1
𝑀 , we construct the cotangent Laplacian matrix 

𝐿 ∈ ℝ𝑁×𝑁 as: 

𝐿𝑖𝑗 =

{
 

 −
1

2
(cot⁡ 𝛼𝑖𝑗 + cot⁡ 𝛽𝑖𝑗) if⁡(𝑖, 𝑗) are⁡adjacent

− ∑
𝑘≠𝑖
𝐿𝑖𝑘 if 𝑖 = 𝑗

0 otherwise

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

 

where 𝑖 and 𝑗 are neighboring vertex indices. The matrix 𝐿𝑖𝑗 

encodes the geometric relation between vertex 𝑣𝑖  and its 

neighboring vertex 𝑣𝑗  . The two angles 𝛼𝑖𝑗  and 𝛽𝑖𝑗  are  

opposite to the edge 𝑖𝑗 in the neighboring triangles. 

The resulting sparse symmetric matrix is solved for its first 

𝑘  eigenpairs (𝜆𝑘 , 𝒆𝑘) . The eigenvalue 𝜆𝑘 ⁡ corresponds to the 

frequency of intrinsic surface vibration modes, while the 

eigenvector 𝒆𝑘  represents a spatially varying shape base. In 

practice, we compute the first 100–1000 larger eigenvalues per 

model. 

After computing the Laplacian spectrum, we extract 

compact descriptors from the eigenvectors to represent each 

model’s geometric characteristics. Each eigenvector describes a 

vibration mode of the surface, and its overall distribution reflects 

how the shape’s geometry varies at different scales.  To obtain 

comparable numerical features, we summarize the amplitude of 
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the frequency over all mesh vertices positions and then compare 

the histograms according to the amplitude.  

By computing a similarity matrix based on the histograms, 

we can visualize and analyze how closely related the shapes 

created by different artists are in terms of their geometric styles. 

 

3. Experiments and Results 

3.1 Dataset 

To evaluate the effectiveness of the proposed spectral 

analysis, we applied our method to a collection of 3D scanned 

clay sculptures created by different artists as summarized in Table 

1. To scan the sculptures, we used X-ray CT scanning system as 

shown in Figure 2 with the setting in Table 2. 

 

Table 1. Data collection 

Artists 4 artists (A, B, C and D) 

Shapes 
6 shapes (cone, cube, cup, cylinder, sphere 

and torus) 

 

  

Figure 2. Scanning environment 

 

Table 2. Scanning setting 

Machine ZEISS METROTOM 1500 G1 

X-ray tube voltage 160kV 

Current 1mA 

Voxel Size 132 um 

Integration time 1 sec. 

Projections 2050 

 

The 3D models used in this study were first obtained as 

voxel data through scanning and then converted into polygonal 

meshes. To obtain a standardized representation of the surface 

geometry, we performed voxel thresholding using Otsu’s method, 

followed by Marching Cubes to extract the surfaces. The scanned 

meshes were then cleaned to remove internal fragments and small 

isolated components. 

3.2 Visualization 

Laplace-Beltrami [6] operator is a fundamental differential 

operator defined on the surface of a manifold. Each eigenvector 

𝒆𝑘 ∈ ℝ
𝑁  of the discrete Laplace-Beltrami operator can be 

interpreted as a sampled version of a continuous eigenfunction 

defined over the mesh. The value 𝒆𝑘(𝑣𝑖)  represents the basis 

function of the k-th harmonic mode at vertex 𝑣𝑖. To visualize 

these manifold harmonic basis functions, we mapped the basis 

𝒆𝑘  to colors at the mesh vertices, as illustrated in Figure 3. 

Figure 3 shows the torus models from two different artists and 

their spatial patterns of Laplacian eigenvectors with three 

different values of k.  

3.3 Comparison and Similarity Analysis 

To analyze the structural characteristics and stylistic 

differences of 3D models, we computed the feature value based 

on the mesh Laplacian operator. For each eigenvector, we 

measured its overall magnitude 𝑆𝑘  on the mesh surface by 

taking account the dot products with the mesh vertex positions. 

 

 
𝑆𝑘 = √(𝒆𝑘 ⋅ 𝒗𝑥)

2 + (𝒆𝑘 ⋅ 𝒗𝑦)
2
+ (𝒆𝑘 ⋅ 𝒗𝑧)

2 
(2) 

 

where 𝒗𝑥,⁡ 𝒗𝑦⁡ and 𝒗𝑧 are 𝑁-D vectors summarizing the mesh 

vertex positions. This value measures the strength of the k-th 

basis function over the entire mode, reflects how geometric 

frequency components are distributed over the shape surface. The 

resulting sequence {𝑆𝑘} serves as a compact spectral signature 

of each model. 

To compare the works of different artists, these sequences are 

normalized and transformed into histogram representations. 

Figure 4 focuses on tours models from four artists. Each 

histogram shows the statistical distribution of the Laplacian 

energy values {𝑆𝑘} across a model. The horizontal axis 

represents the energy magnitude, and the vertical axis indicates 

the frequency. 

 

Figure 4. Eigenvalue distributions 

 

Figure 5. Comparison matrix 

 

Figure 3. Visualization of spatial patterns of Laplacian on 

3D surfaces 
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Figure 5 shows how similar different 3D artworks are in 

terms of their Laplacian spectra. Brighter colors indicate higher 

similarity while darker regions represent more distinct shapes. In 

the ideal case, the similarity matrix exhibits a block-diagonal 

structure, where the 6 × 6  shapes modeled by the same artist 

show higher mutual similarity. 
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