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Analysis of 3D Artwork Styles Using Mesh Laplacian Eigen-features
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Abstract

Understanding artistic style is essential for interpreting
works of arts. Comparing stylistic difference of works by
different artists can help us better understand how art style is
expressed. While artistic style is often regarded as subjective,
objective geometric descriptors can offer measurable view to
analyze individual tendencies in three-dimension artworks. In
this study, we explore how geometric and spectral properties vary
across three-dimensional artworks by different creators. We
collected clay sculptures created by professional artists and
analyzed curvature, saliency and Laplacian operator. By
calculating similarity matrices based on these features, we aim to
identify the stylistic patterns and differences. Our results
demonstrate that the geometric features can serve as quantitative
indicators of sculptural style.

1. Introduction

In the field of two-dimensional art, such as paintings and
prints, lots of research has already been conducted on style
analysis. A large body of work has examined how brushstrokes,
color palettes, or compositional patterns can serve as indicators
of artistic style [1]. However, systematic studies of style in three-
dimensional artworks are limited.

With the advancement of three-dimensional (3D) scanning
technology, obtaining high-quality 3D data has become
increasingly accessible due to the decreasing cost and improving
accuracy of commonly used scanners. The technology progress
has opened new opportunities for the study of artworks,
particularly 3D objects like crafts and sculptures. While some
researches have focused on surface reconstruction or geometric
modeling, few attempts have been made to connect measurable
geometric descriptors directly to artistic individuality of three-
dimensional artworks. Our study addresses this gap by
investigating curvature, saliency [2], and Laplacian eigenfeatures
[3] to capture stylistic tendencies in clay sculptures created by
different artists. Specifically, we focus on Laplacian
eigenfeatures, which summarize global spectral properties of
shape. By analyzing these features in clay sculptures created by
different artists (Figure 1), we aim to explore whether geometric
and spectral analysis can reveal consistent stylistic patterns that
distinguish one author’s work from another.

Figure 1. Clay artworks from various artists

2. Method

We designed the study to test whether geometric descriptors
can reflect artistic styles in 3D forms. Four artists were asked to
model six basic clay shapes: cone, cube, cup, cylinder, sphere and
torus, using the same amount of clay material to keep the works
comparable. We choose these limited shapes to control variables
for comparative analysis. Each piece was digitized through x-ray
CT scanning and reconstructed as a mesh, which serves as the
basis for further analysis. To obtain a standardized representation
of the surface geometry, we performed voxel thresholding using
Otsu’s method [4], followed by Marching Cubes [5] to extract its
surface.

Our analysis proceeded on two levels consisting of local
feature analysis and global feature analysis. To capture local
surface features, we computed mean curvature at mesh vertices
and applied a mesh saliency algorithm to highlight perceptually
prominent regions. The results were displayed with surface color
maps, and their distributions were summarized in histograms for
quantitative comparison.

To characterize global shape structure, we performed
Laplacian eigen-analysis on the meshes and extracted
eigenvalues as spectral features. These descriptors provide a
compact representation of overall form that complements the
local measures. Geometrically, each eigenvector corresponds to
a harmonic basis function defined on the surface: low-frequency
modes smoothly across large area while high-frequency modes
wave rapidly over local regions.

Given a triangular mesh with vertices V = {v;}}*, and
faces F = {fj}ﬁl, we construct the cotangent Laplacian matrix

L € RVXN as:

1
—3 (cot a;; + cot B;j) if (i,)) are adjacent

Ly = —- ¥ Ly ifi=j M
k#i
0 otherwise

where i and j are neighboring vertex indices. The matrix L;;
encodes the geometric relation between vertex wv; and its
neighboring vertex v; . The two angles «;; and f;; are
opposite to the edge ij in the neighboring triangles.

The resulting sparse symmetric matrix is solved for its first
k eigenpairs (A, e;). The eigenvalue A, corresponds to the
frequency of intrinsic surface vibration modes, while the
eigenvector e, represents a spatially varying shape base. In
practice, we compute the first 100—1000 larger eigenvalues per
model.

After computing the Laplacian spectrum, we extract
compact descriptors from the eigenvectors to represent each
model’s geometric characteristics. Each eigenvector describes a
vibration mode of the surface, and its overall distribution reflects
how the shape’s geometry varies at different scales. To obtain
comparable numerical features, we summarize the amplitude of
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the frequency over all mesh vertices positions and then compare
the histograms according to the amplitude.

By computing a similarity matrix based on the histograms,
we can visualize and analyze how closely related the shapes
created by different artists are in terms of their geometric styles.

3. Experiments and Results

3.1 Dataset

To evaluate the effectiveness of the proposed spectral
analysis, we applied our method to a collection of 3D scanned
clay sculptures created by different artists as summarized in Table
1. To scan the sculptures, we used X-ray CT scanning system as
shown in Figure 2 with the setting in Table 2.

Table 1. Data collection

Artists 4 artists (A, B, C and D)
Shapes 6 shapes (cone, cube, cup, cylinder, sphere
and torus)

Figure 2. Scanning environment

Table 2. Scanning setting

Machine ZEISS METROTOM 1500 G1
X-ray tube voltage 160kV

Current ImA

Voxel Size 132 um

Integration time 1 sec.

Projections 2050

The 3D models used in this study were first obtained as
voxel data through scanning and then converted into polygonal
meshes. To obtain a standardized representation of the surface
geometry, we performed voxel thresholding using Otsu’s method,
followed by Marching Cubes to extract the surfaces. The scanned
meshes were then cleaned to remove internal fragments and small
isolated components.

3.2 Visualization

Laplace-Beltrami [6] operator is a fundamental differential
operator defined on the surface of a manifold. Each eigenvector
e, €ERN of the discrete Laplace-Beltrami operator can be
interpreted as a sampled version of a continuous eigenfunction
defined over the mesh. The value ey (v;) represents the basis
function of the A-th harmonic mode at vertex v;. To visualize
these manifold harmonic basis functions, we mapped the basis
e, to colors at the mesh vertices, as illustrated in Figure 3.
Figure 3 shows the torus models from two different artists and
their spatial patterns of Laplacian eigenvectors with three
different values of £.

3.3 Comparison and Similarity Analysis

To analyze the structural characteristics and stylistic
differences of 3D models, we computed the feature value based
on the mesh Laplacian operator. For each eigenvector, we
measured its overall magnitude S, on the mesh surface by
taking account the dot products with the mesh vertex positions.

Frequency -
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Figure 3. Visualization of spatial patterns of Laplacian on
3D surfaces

2
Sk = J(ek V)2 + (e vy)” + (e v,)? @
where vy, v, and v, are N-D vectors summarizing the mesh
vertex positions. This value measures the strength of the k-th
basis function over the entire mode, reflects how geometric
frequency components are distributed over the shape surface. The
resulting sequence {S;} serves as a compact spectral signature
of each model.

To compare the works of different artists, these sequences are
normalized and transformed into histogram representations.
Figure 4 focuses on tours models from four artists. Each
histogram shows the statistical distribution of the Laplacian
energy values {S;} across a model. The horizontal axis
represents the energy magnitude, and the vertical axis indicates
the frequency.

Figure 4. Eigenvalue distributions
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Figure 5. Comparison matrix
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Figure 5 shows how similar different 3D artworks are in
terms of their Laplacian spectra. Brighter colors indicate higher
similarity while darker regions represent more distinct shapes. In
the ideal case, the similarity matrix exhibits a block-diagonal
structure, where the 6 X 6 shapes modeled by the same artist
show higher mutual similarity.
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